
Accurate numerical methods for micromagnetics
simulations with general geometries

Carlos J. Garc�ııa-Cervera a,*, Zydrunas Gimbutas b, Weinan E c

a Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
b Department of Computer Science, Yale University, New Haven, CT 06520, USA

c Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA

Received 10 October 2001; received in revised form 4 September 2002; accepted 26 September 2002

Abstract

In current FFT-based algorithms for micromagnetics simulations, the boundary is typically replaced by a staircase

approximation along the grid lines, either eliminating the incomplete cells or replacing them by complete cells.

Sometimes the magnetizations at the boundary cells are weighted by the volume of the sample in the corresponding cell.

We show that this leads to large errors in the computed exchange and stray fields. One consequence of this is that the

predicted switching mechanism depends sensitively on the orientation of the numerical grid. We present a boundary-

corrected algorithm to efficiently and accurately handle the incomplete cells at the boundary. We show that this

boundary-corrected algorithm greatly improves the accuracy in micromagnetics simulations. We demonstrate by using

A. Arrott�s example of a hexagonal element that the switching mechanism is predicted independently of the grid

orientation.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Micromagnetic modeling of a ferromagnetic material has been an active area of research in the past

decade, and is receiving even more attention because of the general interest in nano-scale physics [11].

Traditionally, interest in understanding the detailed magnetic domains and switching mechanisms has come

from the magnetic recording industry. More recently, the program in designing magnetic random access

memory (MRAM) devices has also given a significant push on the study of nano-scale defect structures in
submicron elements [6,19].
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The dynamics of the magnetization distribution in a ferromagnetic material is described by the Landau–

Lifshitz equation [12,14]:

oM

ot
¼ �cðM �HÞ � ac

Ms

M � ðM �HÞ; ð1Þ

with the boundary condition

oM

om
¼ 0; ð2Þ

where the vector m represents the unit outward normal on the boundary of the ferromagnetic sample. In (1),
jMj ¼ Ms is the saturation magnetization, and is usually set to be a constant far from the Curie temper-

ature; c is the gyromagnetic ratio. The first term on the right-hand side is the gyromagnetic term and the

second term is the damping term. a is the dimensionless damping coefficient.H is the local field, computed
from the Landau–Lifshitz free energy functional:

F ðMÞ ¼ 1

2

Z
V

A
M2
s

jrMj2
�

þ U
M

Ms

� �
� 2l0He 
 M þ l0M 
 rU

�
dx; ð3Þ

H ¼ � dF
dM

¼ A
M2
s

DM � 1

Ms

U0 M

Ms

� �
þ l0He � l0rU : ð4Þ

In (3) and (4), A is the exchange constant, AjrMj2=M2
s is the exchange interaction energy between the spins,

UðM=MsÞ is the energy due to material anisotropy, l0 is the permeability of vacuum, �2l0H 
 M is the
energy due to the external field, V is the volume occupied by the material, and finally the last term in (3) is

the energy due to the field induced by the magnetization distribution inside the material. This induced field

Hs ¼ �rU , or stray field, can be computed by solving the differential equation

DU ¼ r 
 M in V ;

DU ¼ 0 outside V ;

½U  ¼ 0 across oV ;

oU
om

� �
¼ �M 
 m across oV :

ð5Þ

Here we use [ ] to denote the jump of a quantity across the boundary of V , oV .
Eq. (5) can be solved explicitly, and the solution is [21]

UðxÞ ¼ rN � M ¼
Z
R3
rNðx� yÞ 
 MðyÞdy;

Hs ¼ �rUðxÞ ¼ �r
Z
R3
rNðx� yÞ 
 MðyÞdy;

ð6Þ

where

NðxÞ ¼ � 1

4p
1

jxj

is the Newtonian potential in R3.

The main purpose of this paper is to provide an accurate way of evaluating the exchange and stray fields

using FFT-based methods for more general geometries. We achieve this by carefully evaluating the con-
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tributions from the non-rectangular cells that appear near the boundary of the domain when a sample of

arbitrary shape is discretized using a uniform grid. As an illustration of our method, we will investigate the

sensitivity of the numerical results to grid orientation.

2. Review of numerical methods for micromagnetics simulations

The basic idea commonly used in micromagnetics simulations is to decompose the domain into com-
putational cells and approximate both the magnetization and the stray field, on each cell, by a constant

representing its average value. The effective field is evaluated on each cell, and the magnetization is ad-

vanced in time using an appropriate time-stepping scheme. Explicit schemes, such as fourth order Runge–

Kutta, or predictor–corrector schemes, are most commonly used. Recently, a new unconditionally stable

numerical time-stepping procedure was presented in [25].

In broad terms, the numerical methods currently used for the simulation of the Landau–Lifshitz

equation can be divided into two categories, according to how the non-local stray field is evaluated. The

first class of methods solve approximately the differential equation (5) using an appropriate discretization,
such as finite differences or finite elements. The difficulty with this approach is the lack of an effective

boundary condition for U . The differential equation (5) is formulated in the entire space, which has to be
truncated in simulations. Often a boundary integral equation is used to represent the correct boundary

condition at oV [3,13,24].

The second class of methods is based on using (6) to compute the stray field. The convolution integral in

(6) is replaced by some numerical quadrature, and the summation is performed, often by using the Fast

Fourier Transform (FFT) [4,9,10,20,26]. As such, the underlying numerical grid should be uniform in order

to be able to use FFT. Such an approach is quite successful when the material has a rectangular shape.
Otherwise, as we demonstrate in this paper, it suffers from serious inaccuracies when the boundary oV cuts

through numerical cells.

In order to compute the effective field, let us concentrate in the two-dimensional situation.

Assume that the computational domain X is a rectangle with sides aligned with the coordinate axes

which is subdivided into m� n rectangles Xij and that both the magnetization and the stray field are

represented by piecewise constant functions. Let Mij and Hij represent the value of the magnetization and

the stray field inside each rectangle of the subdivision. We will approximate the stray field H inside Xij by its

mean value. Substituting M in (6) and averaging

Hij ¼ �
X
kl

1

jXijj

Z
Xij

r
Z

Xkl

rNðx
�

� yÞdy
�
dx 
 Mkl: ð7Þ

Here, we used the notation jXijj ¼ areaðXijÞ. We define the mutual demagnetizing tensor for domains Xij

and Xkl as

Dijkl ¼
1

jXijj

Z
Xij

r
Z

Xkl

rNðx
�

� yÞdy
�
dx: ð8Þ

After integration by parts:

Dijkl ¼ � 1

jXijj

Z
oXij

Z
oXkl

Nðx
�

� yÞmklðyÞdrklðyÞ
�
� mijðxÞdrijðxÞ; ð9Þ

where the vectors mij and mkl are the unit outward normals on the boundary of Xij and Xkl, respectively. The

tensor product of vectors u and v, denoted by u � v, is defined as the matrix with elements ðu � vÞij ¼ uivj.
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It is easy to see that if the grid is uniform, the value of the demagnetizing tensor depends only on the

differences i� j and k � l, i.e., the tensor is translation invariant. Therefore the sum in (7) is a discrete

convolution and can be efficiently computed by using the FFT.

Computing the demagnetizing tensors is not a trivial task. Integrals in (9) are singular and difficult to

evaluate either analytically or numerically. For rectangular cells, the analytic expression for the demag-

netizing tensors have been obtained by Aharoni [1]. Somewhat more involved analytic expressions for the

mutual demagnetizing tensors for arbitrary non-intersecting rectangular prisms aligned with the coordinate

planes are given in [17].
In many applications the material is a thin film, and in this situation the evaluation of the demagnetizing

tensor can be simplified. Assume that the volume V occupied by the material is X � ½�d; d, where X is a

domain in the xy-plane and 2d is the thickness of the film. If the thickness d is small in comparison to the
size of X, we can safely assume that the magnetization M is constant in the transversal direction to the film,

and depends only on the in-plane coordinates. Under these assumptions, the effective stray field is given by

HsðxÞ ¼ �r
Z

X
rKdðx� yÞ 
 M0ðyÞdy þ

Z
X
Wdðx� yÞ 
M3ðyÞdy 
 e3; ð10Þ

where M0ðxÞ ¼ ðM1ðxÞ;M2ðxÞÞ ¼ M1ðxÞ 
 e1 þM2ðxÞ 
 e2 are the in-plane components of the magnetization
vector MðxÞ ¼ ðM1ðxÞ;M2ðxÞ;M3ðxÞÞ, and Kd : R

2 ! R and Wd : R
2 ! R are defined by the formulas (see [8],

for example),

KdðxÞ ¼
1

2p
arcsinh

2d
jxj

� �
� 1

4pd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ 4d2

q�
� jxj

�
; ð11Þ

where arcsinhðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ and

WdðxÞ ¼
1

4pd
1

jxj

0
B@ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxj2 þ 4d2
q

1
CA; ð12Þ

respectively. Here we use the notation e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e3 ¼ ð0; 0; 1Þ. Consequently, the mutual
demagnetizing tensor for domains Xij and Xkl is given by

Dijkl ¼
Dijkl 0

0 D33
ijkl

 !
; Dijkl ¼

D11
ijkl D12

ijkl

D21
ijkl D33

ijkl

 !
; ð13Þ

where

Dijkl ¼
1

jXijj

Z
oXij

Z
oXkl

Kdðx
�

� yÞ 
 mklðyÞdrklðyÞ
�
� mijðxÞdrijðxÞ ð14Þ

and

D33
ijkl ¼

1

jXijj

Z
Xij

Z
Xkl

Wdðx
�

� yÞdx
�
dy: ð15Þ

The integrals in (14) are one-dimensional and have logarithmic singularities. Furthermore, even if Xij or Xkl

have sharp corners, or some parts of their boundaries intersect or coincide, the gradient of the inner integral

in (14)Z
oXij

Kdðx� yÞ 
 mijðyÞdrijðyÞ ð16Þ
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is infinite at only a finite number of points and the adaptive numerical integration for the outer integral

does not experience any difficulties. Finally, the computation of (15) can be avoided by using the trace

property of the demagnetizing tensors

D33
ijkl ¼ dikdjl � D11

ijkl � D22
ijkl; ð17Þ

which derives from the fact that the Laplacian of the Newtonian potential is a Dirac distribution.

2.1. Staircase approximation

In current micromagnetics simulations of ferromagnetic materials of non-rectangular shape, it is cus-

tomary to consider a rectangular computational domain that contains the ferromagnetic sample. The

magnetization is set equal to zero outside the material and the rectangular domain is discretized using a

uniform grid. This results in the appearance of cells of non-rectangular shape near the boundary of the

material, as illustrated in Fig. 1. It is a common practice to replace the boundary of the sample by a

staircase, as in Fig. 2. This has a dramatic effect on the accuracy of the results.
In order to illustrate this, we consider the example of a hexagonal permalloy element, suggested by

A. Arrott [2]. This is also a good example to check the sensitivity of the numerically computed switching

mechanism to grid orientation, since it is not possible to align the element with the coordinate axes. The

long axis of the element is 1lm, the width is 0:25lm, and the thickness is 0:02lm. The element was em-
bedded into the computational domain with dimensions 1lm� 1lm� 0:02lm. The initial magnetization
was set to be parallel to the long axis, and then a gradually increased external field was applied in

the opposite direction in order to simulate the reversal process. The external field was increased in in-

crements of 2000 A/m and was kept constant at each field step until the steady state was reached. The

Fig. 1. Irregular cells near the boundary of the sample when a uniform discretization is used.

Fig. 2. Staircase approximation: the irregular cells near the boundary have been replaced by rectangles.
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Landau–Lifshitz equation was integrated using the standard 4th order Runge–Kutta method. The damping

parameter a was set equal to 0.1. The physical constants were chosen to mimic permalloy (Ms ¼ 8:0� 105

A/m, Ku ¼ 5:0� 102 J=m3, A ¼ 1:3� 10�11 J=m, c ¼ 1:76� 1011 T�1 s�1).

In Fig. 3 we present images at different stages during the reversal process in the hexagonal sample, where

the boundary has been approximated using the staircase approximation. We used 200 grid points in each

direction to produce these results. In the first column we show the switching process for a sample at 0� with

Fig. 3. Reversal in a hexagonal sample using the staircase approximation in both the exchange and the stray fields: (a)–(c) Enlargement

of the end domains. (d) Interior rotation. (e) Generation of vortices at the boundary. (f)–(g) Enlargement of the end domains. (h)–(j)

Vortices appear on the boundary and enter the domain, causing the reversal of the magnetization.
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respect to the OX axis. In the second column the sample has been rotated by 45� in order to mimic the effect
of a rotation of the numerical grid. Proper geometric scaling factors have been considered in order to make

both simulations equivalent. The sequence shows two completely different switching mechanisms. In both

situations we observe initially the end domains grow, and the center domain shrinks. The results on the first

column show that the switching occurs as a result of a rotation of the magnetization in the center domain,

which subsequently spreads to the whole sample. The results on the second column, however, do not show

such a rotation. What we see is the formation of vortices on the boundary of the sample. These vortices

enter the sample and the orientation of the magnetization is reversed. The sequence also shows that, at 0�,
after the rotation of the magnetization in the interior of the sample has occurred, a series of vortices are

generated on the boundary, and these vortices enter the sample, accelerating the reversal process.

Our experience and the experience of A. Arrott is that such spurious numerically produced switching

does not disappear when the number of grid points in each direction is doubled.

This discrepancy in the switching mechanism is a result of the large errors introduced in the exchange

and stray fields near the boundary of the material as a consequence of the staircase approximation. We

present now corrections to the exchange and stray field that improve the results considerably.

3. Boundary-corrected method

3.1. Corrections in the exchange field

The formation of vortices on the domain walls at the boundary, as seen in Fig. 3(h), is an indication that

the exchange field is not being computed accurately near the boundary of the domain during the simulation.

It is clear that the boundary condition (2) cannot be satisfied accurately using a staircase approximation

since in such a case the numerical boundary of the material does not coincide with the prescribed physical
boundary. This is the main source of errors in the exchange field.

One might argue that in reality the boundary of the sample is never accurately known and may contain

rough edges. Nevertheless, it is important, as the subject matures, to be able to compute accurately the

correct magnetization distribution once the boundary of the sample is given.

In the simulations presented in Fig. 3 the exchange field was approximated using the standard five point

formula for the Laplacian

DMij �
Miþ1;j � 2Mi;j þ Mi�1;j

Dx2
þ Mi;jþ1 � 2Mi;j þ Mi;j�1

Dy2
; ð18Þ

where Dx and Dy are the grid sizes in the OX and OY directions, respectively. To accurately evaluate the

exchange field on the boundary cells, the value of M at exterior cells must be modified in order to take into

account the boundary condition (2). Here we describe a general procedure to produce a second order

accurate approximation to the Laplacian on the cells near the boundary, taking into account the boundary

condition (2).
To illustrate the procedure, we will consider first the one-dimensional case. Consider the situation de-

scribed in Fig. 4. The points x0, x1, and x2 are inside the domain, and the values f0, f1, and f2 are known.
The point x3 is outside the domain, and the value f3 is to be determined. We want to approximate the
second derivative of the function f ðxÞ at x2, knowing that f 0ðx2 þ aDxÞ ¼ 0. We consider the fourth order

accurate interpolation polynomial

pðxÞ ¼ f0 þ
f1 � f0

Dx
ðx� x0Þ þ

f2 � 2f1 þ f0
2Dx2

ðx� x0Þðx� x1Þ

þ f3 � 3f2 þ 3f1 � f0
6Dx3

ðx� x0Þðx� x1Þðx� x2Þ: ð19Þ
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We impose the boundary condition

0 ¼ p0ðx2 þ aDxÞ ¼ f1 � f0
Dx

þ f2 � 2f1 þ f0
2Dx2

ð3þ 2aÞDxþ f3 � 3f2 þ 3f1 � f0
6Dx3

ð2þ 6a þ 3a2ÞDx2: ð20Þ

Thus we obtain

f3 ¼ 3f2 � 3f1 þ f0 �
6

2þ 6a þ 3a2
f1

�
� f0 þ

f2 � 2f1 þ f0
2

ð3þ 2aÞ
�
: ð21Þ

We approximate the second derivative at x2 by

f 00
2 � p00ðx2Þ ¼

f3 � 2f2 þ f1
Dx2

: ð22Þ

Approximation (22) is second order accurate. The details of the proof can be obtained from the authors

upon request. Note also that the coefficients in expression (22) can be bounded independently of a, and
therefore the stability of the time-stepping scheme is not affected.

In the general case, we proceed in the same fashion. We think of the function M as a smooth function

defined on X, and the value Mij as the value of M at the center of the computational cell Xij. Consider now

a situation like the one depicted in Fig. 5. We want to evaluate the Laplacian on the cell ði; jÞ to high order
accuracy. In order to do this, we define a fourth order accurate interpolation polynomial using all the points

labeled in the picture (except Miþb;j�1=2 and Miþ1=2;jþa, which are not grid points). Note that in two di-
mensions we need ten nodes to define such a polynomial:

pðx; yÞ ¼ a0 þ a1ðx� xiÞ þ a2ðy � yjÞ þ a3ðx� xiÞðx� xi�1Þ þ a4ðy � yjÞðy � yj�1Þ

þ a5ðx� xiÞðy � yjÞ þ a6ðx� xiÞðx� xi�1Þðx� xi�2Þ þ a7ðx� xiÞðx� xi�1Þðy � yjÞ

þ a8ðx� xiÞðy � yjÞðy � yj�1Þ þ a9ðy � yjÞðy � yj�1Þðy � yj�2Þ; ð23Þ

where the coefficients a1; a2; . . . ; a9 are determined by using the interpolatory conditions.
We impose the boundary conditions

op
om

ðxi þ bDx; yj � 1
2
DyÞ ¼ 0;

op
om

ðxi � 1
2
Dx; yj þ aDyÞ ¼ 0:

ð24Þ

Fig. 4. High order approximation of the second derivative in the one-dimensional case.
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Let us denote by ma ¼ ðma
1; m

a
2Þ and mb ¼ ðmb

1 ; m
b
2Þ the unit outward normal at the points ðxi � 1

2
Dx; yj þ aDyÞ

and ðxi þ bDx; yj � 1
2
DyÞ, respectively. Then Eq. (24) become

op
ox

ðxi þ bDx; yj � 1
2
DyÞmb

1 þ
op
oy

ðxi þ bDx; yj � 1
2
DyÞmb

2 ¼ 0;

op
ox

ðxi � 1
2
Dx; yj þ aDyÞma

1 þ
op
oy

ðxi � 1
2
Dx; yj þ aDyÞma

2 ¼ 0:

ð25Þ

This is a 2� 2 system of equation with two unknowns, Miþ1;j and Mi;jþ1, which can be easily solved. The

Laplacian at ði; jÞ can be approximated by

DMi;j � Dpðxi; yjÞ ¼
Miþ1;j � 2Mi;j þ Mi�1;j

Dx2
þ Mi;jþ1 � 2Mi;j þ Mi;j�1

Dy2
ð26Þ

One can show that approximation (26) is second order accurate. The details can be obtained from the
authors upon request. To avoid stability problems, one can use an external point that is two grid-points

away from the boundary, instead of just one grid point away. A similar technique has been used in the

context of Immerse Boundary problems [7,15,16]. The advantage of our approach is that it is not necessary

to perform a local change of variables around the boundary of the domain.

In the case of the hexagon considered previously, this simplifies greatly. First, observe that if a boundary

of the sample coincides with a grid line, then we can still use formula (18) without modifications. This

follows from the following observation: On a boundary like the one depicted in Fig. 6 the assignment

Mi;jþ1 ¼ Mi;j would give a second order accurate approximation to the Laplacian at ði; jÞ. However the
torque Mi;j � DhMi;j at ði; jÞ would not be affected if we simply set Mi;jþ1 ¼ 0, since Mi;j � Mi;j ¼ 0.

Fig. 5. Extended stencil near the boundary. Only the grid points used for the interpolation polynomial are labeled. We include the

cases a ¼ 0 and b ¼ 0, in which case a grid point is precisely on the boundary of the sample.
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On the boundaries that are not parallel to the coordinate axes we have a situation like the one depicted in

Fig. 7. In this case, we assign Miþ1;j ¼ Mi;j�1, and Mi;jþ1 ¼ Mi�1:j.

The results obtained with these corrections in the exchange field are presented in Fig. 8. As before, in the

first column we show the results of the simulation with the hexagon at 0� with respect to the OX axis. In

the second column the hexagon has been rotated by 45�. The main observation is that now the first stage of
the switching process, which corresponds with the rotation of the magnetization in the center of the sample,

is common to both simulations: The spurious vortices seen in Fig. 3(h) have been eliminated. However, we

observe that after the interior rotation has occurred, a series of vortices appear on the boundary, and
proceed to the interior, much like in Fig. 3(e). The presence of these vortices is due mainly to the errors in

the stray field.

3.2. Corrections in the stray field

In order to correct the errors in the stray field that result from using the staircase approximation, the

geometric shape of the boundary cells must be taken into account, as illustrated in Fig. 1.

Fig. 6. The boundary coincides with one of the gridlines.

Fig. 7. Boundary of the hexagon. Both a and b are zero. We do not need to increase the stencil in this case.
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The efficient and accurate evaluation of the stray field presents two additional difficulties now. First,

the evaluation of the demagnetization factors becomes more complicated since we need to evaluate the

interaction between cells of arbitrary shape. Second, the standard FFT-based algorithm is no longer

applicable, since the demagnetizing tensors are no longer translation invariant.
We solve the first problem using a combination of analytic formulas and numerical integration for the

demagnetizing tensors. For arbitrary non-intersecting bodies we evaluate the integrals in (9) using adaptive

Fig. 8. Reversal in a hexagonal sample using the staircase approximation in the stray field. The exchange field is computed to second

order accuracy everywhere. (a)–(d) and (f)–(i) show the growth of the end domains and the interior rotation of the magnetization.

(e) and (j) show the subsequent formation of vortices on the boundary.
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numerical integration [5,22,23]. The problems arise if the two domains coincide or have an edge in common.

While the inner integral in (9)Z
oXkl

Nðx� yÞ 
 mklðyÞdrklðyÞ ð27Þ

can be obtained accurately, the outer integral is much more difficult to handle by most numerical inte-

gration programs, due to the large gradients of (27) near the corners of Xkl. Special quadrature may be

applied to accelerate the convergence [5]. For thin films we use formulas (13)–(15), and adaptive Gaussian
quadrature. In our numerical experiments we have been able to compute all integrals to double precision

accuracy.

The loss of translation invariance due to the irregular cells near the boundary is more difficult to deal

with. Our strategy is to express the stray field as the sum of two contributions: the field produced by distant

cells, or far field, and the field produced by the near neighbors, or near field. A similar method is presented

in [18].

Hij ¼ H
ðnearÞ
ij þ H

ðfarÞ
ij : ð28Þ

Each contribution is evaluated in a different way. The near field only involves nearest neighbors, as il-

lustrated in Fig. 9:

H
ðnearÞ
ij ¼ �

X
jk�ij6 1;jj�lj6 1

Dijkl 
 Mkl: ð29Þ

Hence, it can be computed by direct summation in OðNÞ operations, where N is the number of grid points.

The evaluation of the far field is somewhat more complicated. Instead of evaluating it exactly, we ap-

proximate it: We substitute the boundary cells by rectangles, just like in the staircase approximation de-
scribed earlier. The value of the magnetization in these modified cells is rescaled in such a way that the net

magnetization remains unchanged. Since the main contribution to the far field from a distant cell is due to

Fig. 9. Near field and Far field at cell ði; jÞ. For the Near field, only the white cells are used. For the far field, the black cells are used.
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the net magnetization in that cell, we expect this to be a good approximation. The advantage of this

procedure is that by using only rectangular cells, the demagnetizing tensor becomes translation invariant,

and the summation can be performed using the FFT in OðN log2 NÞ operations. Notice that this step is now
the main source of the error. The near field, however, is computed exactly.

The results of the boundary-corrected algorithm are shown in Fig. 10. The improvement in the results is

clear. The interior rotation of the magnetization is followed by the formation of a boundary layer, which

Fig. 10. Reversal in a hexagonal sample using the boundary-corrected algorithm. Corrections for the exchange and stray fields have

been added. The results are insensitive to grid orientation. (a)–(d) and (f)–(i) show the growth of the end domains and the interior

rotation of the magnetization. (e) and (j) show how the domain walls are pushed to the boundary. No vortices are present.
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disappears once the interior domain walls are pushed to the boundary. This mechanism, captured in both

simulations, coincides with the switching mechanism commonly observed in rectangular samples which

display an S state configuration, described in Fig. 11.

For comparison, we present in Fig. 12 various hysteresis loops obtained with and without corrections.

The dimensions of the sample were 1lm� 1lm� 200 �AA. The hysteresis loop was calculated quasi stati-
cally. Starting from a value He ¼ 0 T, the applied field was decreased in steps of 0.002 T when equilibrium

was reached. Two criteria were used to determine that a steady state had been reached: either the simulation

had run for 10 ns, or the relative change in the average magnetization after 10 steps was less than 10�6. We
performed simulations at 0� and at 45�. The results at 45� were computed with both the staircase ap-
proximation and the boundary corrected algorithm. No corrections were necessary for the sample at 0�.
The results for the boundary corrected algorithm for a 200� 200 grid coincided with the results obtained

with the sample at 0�. Reducing the grid size produced the same hysteresis loop. The boundary corrected
algorithm with a 100� 100 grid produced the same results as the staircase approximation with a 200� 200

grid, indicating the improvement achieved by adding the boundary corrections.

Fig. 11. Sketch of the magnetization distribution for an S state configuration in a rectangular cell.

 
 

 
 
 

Fig. 12. Hysteresis loops computed with and without corrections, at 0� and 45�.
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4. Conclusion

We have shown that the staircase approximation leads to very large errors in the computation of the

exchange and stray fields. We have presented an efficient boundary-corrected algorithm that handles di-

rectly and accurately the incomplete cells at the boundary. Experiments with Arrott�s example of a hex-
agonal element show that the boundary-corrected algorithm produces results that are insensitive to grid

orientation.
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